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A technique is presented to scrutinize a piece of remnants of invariants �R. B. Shirts and W. P. Reinhardt, J.
Chem. Phys. 77, 15 �1982�� buried in chaos in many degrees of freedom �DOF� dynamical systems in terms
of canonical perturbation theory based on Lie transforms. The transformed canonical variables are often
evaluated by the truncation of the coordinate transformation at a finite order in the original Hamiltonian
system. However, the truncation of canonical variables gives rise to a loss of the symplectic property of the
system. This results in apparent abrupt fluctuation of the action integrals, which yields a misinterpretation. We
demonstrate, in a three-DOF Hamiltonian system of HCN isomerization reaction, that our technique can detect
remnants of invariants buried in the potential well even at energies higher than the potential barrier, although
the conventional truncation scheme fails to do so. This technique makes it possible to shed light on the physical
insight into how the reactive mode exchanges its energy with the other modes and through which resonance the
energy exchange takes place in reacting systems.
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The mechanism of transport in a space is one of the most
fundamental subjects in a variety of fields such as chemistry
�1–3�, celestial mechanics �4–6�, fluid mechanics �7�, envi-
ronmental science �8�, and biology �9�. For instance, the se-
lective control of the yield of a desired product state is a
long-cherished dream for chemists �10�. For this purpose, a
thorough knowledge of how the system wanders through the
space of the reactant state before leaving to the product state
and how the reactive mode acquires sufficient energy to
climb over the saddle from the reactant to the product states
is imperative. The question of how spacecrafts or asteroids
are transported under the gravitational force is still one of the
fundamental issues in celestial mechanics. The problem of
finding the most efficient route for space missions using the
least possible energy has recently been addressed �6�. With-
out a firm understanding of nonlinear dynamics on how a
spacecraft is captured or wanders through the region of each
planet, its mission would not be achieved.

Several transport phenomena, such as chemical reactions
and a spacecraft or an asteroid in the planetary system, look
quite different from each other, but recent advances in dy-
namical system theory have been successful in bridging
some aspects of these apparently different phenomena on the
common basis of the underlying geometrical structure of
phase space in many-body systems. Most efforts have been
devoted to understanding the phase-space geometry in the
region around a hyperbolic fixed point that has one promi-
nent stable and unstable direction compared with the other
directions. This has led to a description of a roadmap in the
phase space to necessarily mediate the transport from one
local region to the other �1–4�. However, the questions of
how the system travels within the local region that is remote
from the region of the saddle, and what kinds of phase-space
structures the system experiences, such as Arnold web �11�
and remnant of invariant �12�, have not yet been clarified for
highly chaotic many-body systems. Some previous studies
have revealed the existence of a variety of anomalies in the
phase-space transport in Hamiltonian systems, e.g., sticky

motion in the stagnant layer �13�, fractional kinetics �14�,
and very slow dynamics �15–19�. These must be a manifes-
tation of the nonuniform nature of the underlying phase
space. In order to reveal the underlying mechanism behind
such anomalous transport phenomena in the same footing
and also to understand their physical consequences, such as
nonuniform energy exchange processes among the different
vibrational modes in molecular systems, it is highly desirable
to develop a technique to explore invariant, or remnant of
invariant, manifolds buried in chaos.

In this Brief Report, we present a technique to scrutinize
remnant of invariants based on the formula originally devel-
oped by Hori �20� and later by Deprit �21�. The key strategy
is the use of virtual time evolution derived from a series of
appropriate generating functions in canonical perturbation
calculation. It is found that this technique can capture the
underlying remnants of invariants to mediate the energy ex-
change among modes at energies so high above the potential
barrier that the conventional procedure resting on the finite
truncation of the coordinate transformation cannot.

We begin with a brief outline of the procedure, which is
based on canonical perturbation theory �CPT�, a classical
analogue of Van Vleck perturbation theory in quantum me-
chanics, written in the language of Lie algebras �22�. Sup-
pose that the Hamiltonian H of the N degrees of freedom
�DOF� system is analytic with respect to the canonical coor-
dinates and the conjugate momenta �p ,q�
= �p1 , . . . , pN , q1 , . . . ,qN�, and that H can be expanded in the
neighborhood of a stationary point as

H�p,q� = �
k=2

�

Hk�p,q� . �1�

Here, we denote H2 by
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H2 =
1

2�
i=1

N

�i�pi
2 + qi

2� �2�

and Hk by the coupling terms composed of the kth-order
power series in �p ,q�, and �i is either real or imaginary.

The goal of CPT is to find generating functions
F3 ,F4 , . . . ,Fm �up to a certain order m� so that the original

Hamiltonian H can be transformed into a simpler form Ĥ by
sequential canonical transformations,

Ĥ = eLm
¯ eL3H = H2 + Ĥ3 + ¯ + Ĥm

+ �terms whose order is higher than m� . �3�

Here eLk =e�Fk,·� is written in terms of the Poisson bracket
�A ,B���i=1

N � �A
�qi

�B
�pi

− �A
�pi

�B
�qi

� and

eLkf � f + �Fk, f� +
1

2
ˆFk,�Fk, f�‰ + ¯ . �4�

Fk and Ĥk are sums of monomials of order k in the canonical
variables �p ,q�. The generating function Fk is determined so

that Ĥk satisfies �H2 , Ĥk�=0 and becomes as simple as pos-
sible �22�.

There are mainly two different approaches to extract the
geometrical structure of phase space in terms of CPT. The
first and most prevailing approach is to transform H such as
Eq. �3� and truncate it at �m+1�th order. If one can confirm
that a solution of the truncated Hamiltonian is close to the
solution of the original Hamiltonian H �see, e.g., �23��, one
can assign the geometrical structures associated with H in
terms of the truncated Hamiltonian. However, in general, it is
very difficult to prove that the two solutions are equivalent
unless they are both sufficiently close to the stationary point.
The other approach is the following: One traces the new

coordinates and momenta �p̂�m� , q̂�m�� in Ĥ as functions of
�p ,q� obeying the original Hamiltonian H,

p̂i
�m��p,q� = e−Lme−Lm−1

¯ e−L3pi,

q̂i
�m��p,q� = e−Lme−Lm−1

¯ e−L3qi. �5�

It is known that this transformation preserves the symplectic
property if �p ,q� are symplectic �see, e.g., �20,21��. For ex-
ample, if the system is transformed into a set of isolated
oscillators by �p ,q�→ �p̂�m� , q̂�m��, the associated action inte-

grals Îi
�m��p ,q�� 1

2 ��p̂i
�m��p ,q��2+ �q̂i

�m��p ,q��2� should, in
principle, be constants of motion during the dynamical evo-
lution obeying H�p ,q�.

Considering the former approach, one can neither extract
the underlying remnants of invariants structures such as
vague tori �12�, which might behave as a bottleneck during
the transport in phase space, nor reveal intermittent hopping
motion between such remnants of invariants. This shortage is
a consequence of the fact that the truncated Hamiltonian al-
ways provides a globally integrable or near-integrable repre-
sentation, such that the system never or hardly ever evolves
in different regions of remnants of invariants. On the other
hand, the latter approach using Eqs. �5� to trace the dynami-
cal evolution obeying the original Hamiltonian should reveal

how the system enters and escapes from remnants of invari-

ants by means of the evolution of the action integrals Îi
�m�.

Furthermore, one can also grasp the order of resonance
through which the energy exchange takes place by monitor-

ing the ratios between the frequencies �Ĥ /�Îi
�m�.

In common CPT calculations, the transformed variables in
Eqs. �5� are usually written as an expansion series truncated
at a certain finite order, e.g., �m+1�th order,

p̂i
�m� 	 pi − �F3,pi� + ¯ + �terms of mth order� ,

q̂i
�m� 	 qi − �F3,qi� + ¯ + �terms of mth order� . �6�

In Fig. 1, we show an example of the evolution of the
three action integrals along a potential well in the isomeriza-
tion process of the HCN molecule. HCN is modeled by a
three-DOF Hamiltonian with zero total angular momentum:
H= 1

2� pr
2+ 1

2m pR
2 + 1

2 � 1
�r2 + 1

mR2 �p�
2 +V�r ,R ,��. Here, r denotes

the distance between the C and the N atoms, R is the distance
between H and the center of mass between C and N, and � is
the angle between H and C as seen from the center of mass
of C and N in Jacobi coordinates. � and m are, respectively,
the reduced mass of the CN diatom and the mass of the full
system. As for the potential V�r ,R ,��, we use the surface
introduced by Murrel et al. �24�. First, we expand the Hamil-
tonian as a power series with respect to the normal coordi-
nates �p ,q� around a potential minimum according to the

procedure outlined in Eqs. �1� and �2�. The new actions Îi
�m�

are evaluated in terms of �p̂i
�4� , q̂i

�4�� and �p̂i
�7� , q̂i

�7�� via Eqs.

�6�. Here, Î1 and Î2 roughly correspond to the stretching mo-

tions along the coordinates r and R, respectively, and Î3 to
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FIG. 1. �Color online� �a� A representative reactive trajectory of
HCN isomerization, r �dotted line�, R �thin solid line�, and � �thick
solid line�. Here total energy is set to be E=−0.420 kcal /mol,
where the potential barrier height to connect the HCN and HNC
wells is −0.444 kcal /mol. �	0, 	� and �	 �1.168 rad corre-
spond to the HCN and HNC well and a saddle point to link the two
wells, respectively. One can see that � takes around 0 between t
=50 and 225 fs, which means that the system traverses the HCN

well in this interval. �b�–�d� The action integrals Îi
�4� �thin solid line�

and Îi
�7� �thick solid line� obtained from Eq. �6� for each DOF in the

HCN well.
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the bending motion associated with the angle �. Note that, if
the actions are well defined in the potential well, they are
expected to exhibit approximate constants or evolve slowly
along trajectories inside the well. In Fig. 1, one can, how-
ever, observe that all actions abruptly fluctuate. The increase
of the perturbation order does not resolve this problem. Padé
resummation techniques have often been employed to ex-
trapolate to higher orders in terms of a set of truncated cal-
culations �12�. It was found, however, that the Padé coeffi-
cients cannot be determined for these abruptly changing
actions. One might conjecture that the fluctuations of action
integrals are caused by the nonintegrability of the system due
to the high nonlinearity of the potential at energies above the
potential barrier.

As was shown here, the truncation of the CPT transfor-
mation can lead to abrupt fluctuations of the new action in-
tegrals when they are traced in the original system. This
phenomenon results from the fact that Eqs. �6� do not repre-
sent a symplectic system due to the truncation in �p ,q�.
These apparent fluctuations in the action integrals have so far
remained unnoticed in the literature. It is difficult to assign
the origin of the fluctuations, as both the truncation or intrin-
sic chaos might be important, especially for the evolution in
the potential well at such high energies.

We present a technique that preserves the symplectic
property in the transformed variables based on the Lie trans-
forms �20,21�. Their formula is as follows: provided that a
generating function W is calculated analytically in advance,
the canonical transformation associated with W,

�P,Q� = 
e�W,·��p,q�
�p,q�=�p0,q0�, �7�

can be determined by solving the set of ordinary differential
equations,

dp���
d�

= −
�W

�q
,

dq���
d�

=
�W

�p
, �8�

with the initial condition �p0 ,q0�= (p�0� ,q�0�). The new ca-
nonical variables �P ,Q� are identified as (p�1� ,q�1�). The
canonical transformation in Eqs. �7� can easily be general-
ized for any observable A�p ,q�, e.g., the action integrals and

the frequencies �Ĥ /�Îi, with the help of the relation of
e�W,·�A�p ,q�=A�e�W,·�p ,e�W,·�q�=A�P ,Q� �20,21�. We make
use of this idea by replacing W by −Fk in Eqs. �8�. First, we

propagate (p��� ,q���) starting from the initial point
(p��=0� ,q��=0�)= �p0 ,q0� by using the third-order generat-
ing function F3 until � becomes 1. The resultant (p�1� ,q�1�)
are the transformed canonical variables at the third order, i.e.,
�p̂�3� , q̂�3��, which corresponds to the first operation e−L3pi
and e−L3qi in Eqs. �5�. Second, starting from the point
�p̂�3� , q̂�3��, we further propagate the system in terms of the
fourth-order generating function F4 using the same proce-
dure as before. By iterating this step, one can precisely
evaluate the new canonical variables up to a chosen order m,
�p̂�m� , q̂�m��. Note that Eqs. �5� themselves remain symplectic
if �p ,q� is symplectic �20,21�. Therefore, our procedure does
not lose the symplectic property, and the validity range of the
new canonical coordinates is expected to be much wider
compared to the truncated approach using Eqs. �6�.

Figure 2 shows the three actions at seventh order calcu-
lated by our technique using Fk �k=3,4 , . . . ,7� along the
same trajectory as in Fig. 1�a�. One can notice that, com-
pared to Figs. 1�b�–1�d�, the abrupt fluctuations are much
more suppressed, and fewer spontaneous peaks appear,
though the same generating functions have been used. In
addition, one observes that some fluctuations persist in cer-
tain intervals of time, e.g., between t=80 and 90 fs. This
indicates the existence of intrinsic chaos in a certain region
of the multidimensional phase space. Figures 3�a� and 3�b�
illustrate the consecutive time evolution according to
−Fk �k=3,4 , . . . ,7� initiated at (p�t� ,q�t�) at t1=81.76 fs and
t2=115.14 fs, respectively. Here, the trajectories are pro-
jected onto the place of �p3 ,q3�. One can expect that the
trajectory initiated at t1, when large fluctuation occurs, sig-
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FIG. 2. �Color online� The new actions calculated by virtual
time evolution using Fk �k=3,4 , . . . ,7� for each DOF along the
same trajectory shown in Fig. 1.
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nificantly evolves, whereas the trajectory at t2 shows the ten-
dency to converge into a certain value. We also found that
the largest local Lyapunov exponent underlines the differ-
ence between the two points in the local divergence rate in
phase space. The most important result of our approach is the
finding of slowly varying actions in the interval from t=90 to
200 fs. This result implies that some remnants of invariants
are buried in HCN even at the high-energy region above the
potential barrier. This means that the concept of the modes
still exists and is well defined in the time interval. In Fig. 2,
one observes that the action of the third mode, which is
associated with the reactive mode, gradually decreases from
t=90 to 150 fs, implying the release of energy into the two
other modes. Then, from that point in time, the action gradu-
ally turns to increase and gains energy from the bath modes.
Moreover, the comparison of frequency ratios shows that the
energy exchange occurs through the �̂2 : �̂3=6:1 resonance

as shown in Fig. 4. This assignment of modes and the reso-
nance through which the energy exchange takes place cannot
be demonstrated with a truncated scheme such as Eqs. �6�.

We expect that our technique can overcome the drawback
of the conventional truncation scheme that spoils the sym-
plectic property of the original variables and can capture the
underlying remnants of invariants that make it possible to
investigate not only energy exchange processes but also their
relation to chemical reaction processes of how the reactive
mode acquires �loses� its energy in order to climb over the
potential barrier �to be trapped in the potential well� and
through which resonance the energy transfer occurs.
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